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Thermoelectric properties of heterogeneous materials are discussed in terms of a randomly 
oriented rectangular plate-like mosaic of anisotropic crystalline grains embedded in 
a homogeneous host material. Anisotropies in effective thermoelectric parameters and the values 
of thermoelectric parameters can be related to the mean orientation of the plate-like grains which, 
in turn, can be related to the orientation factor of Lotgering. They are also functions of various 
parameters such as dimension ratios ~, ~' and ~" of electrical resistivities, thermal conductivities, 
and the Seebeck coefficient, respectively, of grains to those of host medium. Use of f-dependent 
anisotropies in conjunction with relative magnitudes of electrical and thermal conductivities 
as well as of the Seebeck coefficient, allows ~, ~' and ~" to be estimated, which characterize 
the intergranular medium. 

1. In troduc t ion  
Heterogeneous materials, such as sintered or hot- 
pressed ceramics, are at the focus of increasing interest 
from both scientists and engineers. Aside from the 
great potentiality of high Tc superconducting ceramics 
[1], they are used in various fields of materials engin- 
eering. 

In addition, the obvious merit from the cost- 
performance point of view is that they often exhibit 
improved mechanical properties over those of easily 
cleaved or brittle crystalline counterparts, as exempli- 
fied by the fibre-reinforced materials. Moreover, one 
may take advantage of the complex structure of these 
substances, i.e. the existence of grain boundaries or 
intergranular substances, to improve the effective per- 
formance of the system. One of the classical examples 
is the boundary layer capacitance (e.g. I-2]). Also ZnO 
varistors 1-3] PTC semiconducting ceramics [.4] are 
believed to make use of properties of boundary layer 
junctions, though this is not yet well understood. 

Material design of heterogeneous systems with their 
optimal characteristics is a challenging task. However, 
endeavour in this direction has largely been empirical 
in nature and almost no systematic attempt seems to 
have been made so far to understand or control the 
characteristics of a specific heterogeneous system. This 
is because there are so many processing parameters 
which influence the "microscopic" structure of the 

system which, in itself, is very complex and cannot be 
simply characterized. The second difficulty seems to 
be related to the fact that there are so many physical 
parameters characterizing each "microscopic" mem- 
ber of the system, many of which cannot be measured 
separately. Finally, there has been no simple recipe 
established to relate these parameters to the effective 
bulk physical parameters of the system. 

The effective medium theory (EMT) seems to be 
one of the most promising ways to predict the effective 
parameters of the overall system from those of the 
constituent members. It gives effective physical para- 
meters, such as conductivity [5, 6], susceptibility ['7, 
8], elastic constants [-9], or optical constants [-10] of 
the system in terms of those of component materials 
and also of their ratios in spatial dimensions. In this 
kind of theory the heterogeneous system is modelled 
either as a homogeneous medium into which spherical 
[-11], cylindrical [12], or ellipsoidal [.13] particles of 
the second medium are embedded. From the self- 
consistency requirement, usually expressed in the form 
of boundary conditions at the surface of these em- 
bedded particles, effective physical parameters can be 
determined. 

Sophisticated expressions are derived [14], or lower 
or upper bounds are given for the effective parameters 
in the iterative solution of these implicit expressions 
for the parameters [15]. In some cases, the statistical 
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distributions of particles are 
[16, 17-1. 

Unfortunately, these theories 
cated to compare their results 
tion of experimental data. The 

taken into account 

are much too sophisti- 
with a large compila- 
theories are also built 

only to simulate the "effective conductivity tensors" 
and, to our knowledge, only one preliminary report 
has been made on an attempt to discuss thermoelec- 
tric power of the system [18]. 

On the other hand, a simple square mosaic model 
originally proposed by Volger [19] to discuss Hall 
voltage has been extended to the discussion of not 
only conductivity but also Hall and Seebeck coeffi- 
cients of heterogeneous systems by Bube 1-20, 21] in an 
attempt to discriminate between barrier and number 
mechanisms of photoconductivity in PbS films [22]. 

In this paper, we extend this approach to the case of 
a randomly oriented plate-like mosaic model to sim- 
ulate the anisotropic thermoelectric properties of hot- 
pressed Bi2Te3 semiconducting ceramics. BizTe3 
thermoelectric ceramiCs are chosen because they can 
be characterized by the famous figure of merit Z [23]. 
Also, hot-pressed samples in this system have recently 
been shown to exhibit a competitive figure of merit, Z, 
compared to that of zone-melted samples and it is of 
interest to try to give a guide to optimize Z of this 
system [24]. 

In the following sections, models, assumptions and 
approximations are given. Expressions for the effective 
conductivities and Seebeck coefficient of the hetero- 
geneous sample are given which are then used in the 
numerical studies outlined. The results are discussed 
and qualitative comparison is made with the experi- 
mental data on the Bi2Te3 system [-25]. 

2. Experiments and results 
2.1. Sample preparation 
The bromine-doped Bi2Te2.ssSeo.15 alloys were 
melted in a 1 atm Ar atmosphere at 800 °C for 3-5 h. 
The zone-melted samples were grown in a quartz tube 
of 25 mm diameter moving in one direction at a rate of 
5 m m h - 1 .  The alloys for the hot-pressed samples 
were cooled slowly and crushed in a stamp mill in 
a non-volatile atmosphere. They were then sifted into 
five groups of grains with diameters ranging from 
about 50-250gm. The powders thus prepared 
for sintering were hot-pressed at 500°C under 
300 kgfcm -2 (~2.9 x 103 Ncm -z)  for 1 h. The zone- 
melt and hot-pressed samples were prepared in the 
form of a platelet with dimensions 5 x 15 × 3 mm 3. 
Measurements were made on these samples. 

2.2. Thermoelectric measurements and X-ray 
diffraction 

Fig. 1 shows the direction of the measurements for 
Seebeck coefficient, S, and the electrical resistivity, 
p(cy- 1), of the hot-pressed and zone-melted samples. 
Seebeck coefficient, S, was measured at 300 K by the 
standard d.c. technique using a thermal belt sensor 
made of a thin film of copper-constantan [23]. This 
sensor enabled us to measure the Seebeck coefficient 
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Figure 1 Sample and measurement configuration. (a) Zone-melted 
c-plane direction sample: direction of measurement is in the plane of 
the sample and is perpendicular to the hot-pressed direction. (b) 
Zone-melted e-axis sample: direction of measurement is in the plane 
of the sample and parallel to the hot-pressed direction. (c) Hot- 
pressed c-plane direction sample: direction of measurement is in the 
plane of the sample and is parallel to the zone-melting direction. (d) 
Hot-pressed c-axis sample: direction of measurements is in the plane 
of the sample and perpendicular to the zone-melting direction. 

of the sample with _+ 5 gV K -  1 accuracy. Electrical 
resistivity, 9, was measured using two probes separ- 
ated by 2 ram, reversing the direction of the current 
with a turning switch. The temperature dependence of 
conductivity was measured using an a.c. technique 
using an LCR meter in a sealed evacuated chamber 
cooled with liquid nitrogen. 

Fig. 2 shows the X-ray diffraction patterns of the 
zone-melted and hot-pressed samples. In the case of 
the zone-melted sample, the X-ray diffraction inten- 
sities of the (0, 0, I) directions are strong perpendicular 
to the zone-melting direction, while in the case of hot- 
pressed samples, they are strong in the hot-pressed 
direction. The a-axis of the zone-melted sample is 
oriented along zone-melting direction. 

Generally, hot-pressed BizTez.asSeo.15 samples 
consist of flake-like grains whose normal c-axes are 
oriented randomly around the pressed direction. The 
average orientation of microcrystallites in the samples 
is estimated from the X-ray diffraction intensities of 
the (0, 0, l) planes. 

According to Lotgerling [26], the orientation fac- 
tor, f is defined by 

f = (P - Po) / (  1 - Po) (1) 

where P is the fraction of diffraction intensity, I(0, 0, l) 
from the (0,0,/) planes to the total intensities, 
S l ( h ,  k, l), given as 

P = 2 I ( O , O , l ) / S I ( h , k , l )  (2) 

where Po is the value of P for the sample which shows 
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Figure 2 X-ray diffraction pattern for Bi2 Te2.ss Seo.x 5 for (a) hot-pressed c-plane direction sample, (b) hot-pressed c-axis direction sample, (c) 
zone-melted c-plane direction sample, (d) zone-melted c-axis direction sample. 

no preferential orientation. We have used the P value 
of the unpressed sample as our standard P0 [11]. 

Table ! shows the thermoelectric properties of 
Seebeck coefficients, S, electrical conductivities, c~, the 
densities, and the orientation factor, f of the zone- 
melted and the hot-pressed samples. The Seebeck co- 
efficients and electrical conductivities of the zone- 
melted samples were higher than those of hot-pressed 

samples. The orientation factor shows the same ten- 
dency. In this case, the thermoelectric properties of the 
hot-pressed samples were found to be close to those of 
the zone-melted samples without degradation of its 
Seebeck coefficient. Table II shows the anisotropy of 
o, K and S, respectively. It is well known that crystal- 
line grains in the zone-melted samples show cleavage 
along planes perpendicular to the c-axis. The 

TA BLE I The thermoelectric properties of zone-melted sample and hot-pressed sample 

Sample Zone-melting and Density Orientation factor, Conductivity, 
hot-pressing (gem -3) f o(D lcm 1) 
conditions 

Seebeck coefficient, 
S(gVK -1) 

~2 (3" 
(10 -3 W cmK-2) 

Zone-melted 800 °C, 5 mm h 1 7.70 0.932 1.00 

sample (zone-rate) 

Hot-pressed T= 500 °C, 60 rain 7.62 0.756 0.97 
sample P = 300 kg f cm - 2 

205 

198 

42.0 

38.0 
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T A B L E I I The thermoelectric properties of zone-melted samples and hot-pressed samples for Bi z Te2. 85 Se0.15 

Sample Direction Seebeck coefficient, Thermal conductivity, Electrical conductivity, 
S ( g V K  1) ~ ( m W c m - l K  1) o ( p  1 ) ( ~ - 1 c m - 1 )  

Thermoelectrical 
figure of merit 
(10-3 K -1 ) 

Zone-melted c-plane 215 17.6 1.08 
sample c-axis 236 15.2 0.31 

Anisotropic "¢'(Sql/Sl) 7'(KII/K±) T(PlI/P±) 
factor 0.91 1.16 0.29 

Hot-pressed c-plane 200 14.9 !.05 
sample c-axis 198 11.0 0.56 

Anisotropic F" (Se/Sz) F'(Kv/~z) F(pe/pz)  
factor 1.03 1.35 0.53 

2.85 
1.14 
g(zn / z l )  
2.50 
2.83 
1.98 
G(ZF/Zz) 
1.43 

Hot-pressing conditions: Tp = 60 min, P = 300 kg cm - 2, Th = 500 °C, particle sizes 250-150:150-90:90-75 = 1 : 2 : 1. 
Zone-melting conditions: 800 °C, 5 mm h - 1 (zone-rate). 

T A B L E  II I  Analysis of imaging of the optical micrograph for Bi2Te2.ssSeo.15 

Sample Area Circle diameter Ellipse diameter (lam) 
(pm 2 ) (gm) 

a (long diameter) c (short diameter) 

Ellipticity 
(a/c) 

c-plane 

c-axis 

Min, 1.00 1.13 0.0 0.0 
Max. 5.18 x 103 8.12x 101 1.05 x 102 7.01 x 10 ~ 
Ave. 5.11 x 103 2.21 x 101 3.23 x 101 1.56x 101 
Min, 2.37 1.74 0.0 0.0 
Max. 2.19 x 104 1.67 x 102 3.57 x 102 1,48 x 102 
Ave, 1.58 x 103 3.60x 101 6.77 x 101 2.06 x 101 

1.49 
2,07 

2.40 
3.29 

parameter with the strongest anisotropy is o and its 
magnitude o11/o± amounts to 2.5 for the zone-melted 
sample. 

2.3. The imaging analysis and aspect ratio 
of the grains 

Fig. 3 shows the block diagram of the system for 
micrograph image analysis of the cross-section of hot- 
pressed samples. Observations by optical microscopy 
were made after polishing the surface of the sample 
with carborundum powder (no. 2000) and then chem- 
ically etching the surface in ethyl alcohol with HNO3 
for 3 min. The optical micrographs were displayed on 
a TV monitor. The displayed image pictures were 
fixed and their ratio of areas was measured by the 
contrast between boundaries and grains from the 
image of their optical micrograph in TVIP-2000. 
From the measurements, the distribution of particle 
sizes and the approximate value of anisotropy were 
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Figure 3 The block diagram of the image analysis of a micrograph 
of hot-pressed samples. 
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calculated using a personal computer. Their estimated 
minimum, maximum and average values are indicated 
in Table III. 

Fig. 4 shows the imaging analysis of the micro- 
graphs of the c-plane and c-axis in the hot-pressed 
sample. In the c-plane sample, platelet patterns of the 
particles were observed and several particles exist in 
the c-axis sample. Table III gives the results of the 
imaging analysis of the grains and the grain boundary. 
The ratio of grains to the grain-boundary area was 
estimated to be about 95%, which is similar to the 
densities of the sintered samples. Fig. 5 shows the 
distribution of the areas of grains. From Table III it 
can be seen that the ratio of average ellipticity (a/c) for 
the c-axis sample is 1.6 times that of c-plane sample. If 
one assumes that one is looking at a random distribu- 
tion of pancake-like (oblate) ellipsoids of revolution 
with their average larger and smaller semiaxes a and 
c from the F and Z directions one can estimate both 
the mean e11ipticity 

- c/a (3) 

and average of cos 2 0 

X = (cos20)  (4) 

from these observations (Fig. 6). Employing the 
approximation ( (X 2 + Z2) / c  2 ) ~ ( X  2 + Z 2 ) / ( c  2 ) 
we arrive at (c'~ = clt or c,) 

8 2 
( c i / a )  2 = (5) 

6 2 + (1 - -  F-. 2 ) X 

6 2 

(cll/a)2 = 1 + ( ~ 2 -  1) X (6) 

We estimate ~ = 0.28 and X = 0.78 for this sample 
from the experimental data. 
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J 
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Figure 4 Imaging analysis of the micrographs of the hot-pressed 
samples. (a) Cross-section perpendicular to pressed direction, (b) 
cross-section parallel to pressed direction. Th -- 500°C, 
Ph = 300 kg cm - 2. 

3. Theory 
3.1. Three-dimensional mosaic model and 

approximations 
Contrary to the case of ZnO varistors, no evidence is 
known to suggest the importance of characteristics 
related to the non-linear or junction nature of the 
interface between grains and intergranular medium in 
our system. Therefore, the simplest mosaic model was 
adopted in which no such non-linear effects are in- 
corporated. Fig. 7 shows our three-dimensional 
mosaic model. In this model, thin, square (Io x 11 x 1'1) 
plate-like grains with anisotropic parameters are em- 
bedded in an isotropic homogeneous intergranular 
medium 2 of thickness 12, resistivity P2, thermal con- 
ductivity ~;2, and Seebeck coefficient $2. Crystalline 
grains are, in general, anisotropic and are character- 
ized by Pl, 7Pl;  K1, 3"K1; $1 ,  3'"$1 in the direction 
along and perpendicular to the c-axis. Stacks of the 
blocks consisting of the grain and the surrounding 
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Figure 5 The distribution of cross-sectional areas of the grains in 
a hot-pressed sample. 
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Figure 6 Imaging analysis of the grain size for the orientation fac- 
tor, f a is the major axis and Cz, cv are the minor axes in the parallel 
and perpendicular directions. 

intergranular medium are arranged in a random 
fashion with their azimuthal 0 and meridian ~ angles 
distributed according to some statistical distribution. 
We assume that the distribution in qb is uniform so 
that (cos 2 qb) = (sin 2 ~ )  = 1/2, while the distribu- 
tion in 0 is affected by the hot-pressing process. We 
can expect that (cos  20 )  is related to the orientation 
factor of Lotgering. In the absence of precise informa- 
tion on the statistical distribution of 0, we assume 
a simple linear relation 

X = (cos 20)  = (1 + 2 f ) /3  (7) 

We have also made the approximation 

X '  = (cos 4 0)  = (1 + 2 f +  2f2) /5  (8) 

These approximate expressions are the outcome of the 
linear approximation and the "boundary condition" 
X = X ' =  1 for f =  1 (perfect orientation) and 
X = 1/3, X '  = 1/5 for f = 0 (uniform random orienta- 
tion). Also we assume a quadratic relation 
X ' = a X 2 + b  '. 

Anisotropy factors of crystalline grains 3' = P l . / P l  H, 
3" = KI±/t(1 II, 3'" = $1±/$1 II for resistivity, thermal 
conductivity, and Seebeck coefficient, respectively, 
may be estimated from the data on melt-grown sam- 
ples. Geometrical factors 13 = 12/ll, ~' = lo/l l  can also 
be estimated from the data on the imaging analysis of 

885 



12 

'o I 
[cl} 

~UJ a 0 

I2 

C 

' - I  
I 

(e) 

Figure 7 Three-dimensional mosaic model. (a) A block consists of 
a grain and intergranular medium, (b) stack and (c) random orienta- 
tion of stacks. In this model, thin, square (1o x ll x l~) plate-like 
grains with anisotropic parameters are embedded in an isotropic 
homogeneous intergranular medium 2 of thickness 12, resistivity 92, 
thermal conductivity 1(2 and Seebeck coefficient $2. Geometrical 
factors [3 = 12/ll, [3' = lo/ll, can also be estimated from the data on 
imaging analysis of the micrographs. 

the micrographs of the cross-sections of hot-pressed 
samples. [3' may be identified with ~, as estimated in 
Section 2.3. Thus, at= Pl/P2, 0(=K1/K2, and 
a t"= $1 /$2  are the only parameters  which may be 
adjusted to fit the data  for the effective thermoelectric 
parameters  of the ceramics. 

In this simple model the impor tant  role played by 
voids or porosi ty of the sample is not  included ex- 
plicitly. Such effects or possible effects of grain inter- 
face structure can only be included through a. 

3.2. Effective thermoelect r ic  parameters 
One can easily derive analytical expressions for the 
effective bulk thermoelectric parameters  in parallel (P) 
and perpendicular (S) directions to the c-axis of the 
stacked layer of grains. Normal ized expressions for 
thermoelectric parameters,  resistivities, thermal con- 
ductivities and Seebeck coefficients can be written in 
terms of'at and [3: 
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Effective resistivity 

Pp/Pl = (1 + [3)2([3 + at~,)Eat([3 + [3') 

+ cz[3(2 + [3)(at[3' + [3)] (9) 

= (1 + [3)([3 + [3')(~,,at + [3)/[at[3'(1 + [3) 

(lo) 

Ps/Pl 

+ ~ [ 3 ( ~  + [3)(1 + [3 + [33] 

Effective thermal conductivity 

K1/~cp = at'(1 + 13)2([3 , + at'[3)/Eat'([3 + [3') 

+ [3(2 + 13)([3' + at'l])] 

K1/Ks = at'(1 + [3)([3 + [39(1 + v'at'13)/ 

[T'at'[3'(1 + [3)+ [3(1 + y'at'[3) 

x(1  + 13+ [39] 

Effective Seebeck coefficient 

Sp/S1 

(11) 

(12) 

= [[3' + at"-'[3{~[3'(2 + [3) + (cz[3(2 + [3) 

+. 1}at '}]/([Y + at'J3){1 + at[3(2 + [3)} 

(13) 

S p / S  1 = p y " [ 3 '  .Off ~,,-l[3{Tat(1 + T'at'[3) 

x (1 + [3 + [3') + y'at ' [3'} ] /(1 + y'at'[3) 

x {[3' + 7at[3(1 + [3 + [3')} (14) 

Next, we imagine that  these stacks of grains and 
intergranular particles are oriented at r andom with 
a statistical distribution of O and qb determined by the 
hot-pressing condition. The expression for statistically 
averaged thermoelectrical parameters  in the Z and 
F directions parallel and perpendicular,  respectively, 
to the pressed direction, can be found. 

Average conductivity 

Cyz = % + 2 A ~ X  (15) 

O" e = (3" a - -  A o ' X  (16) 

C a = ((3"p 4y ( Y S ) / 2  (17) 
Ar~ = ( %  - Cys)/2 

Average thermal conductivity 

Kz = Ks + 2AKX (18) 

K" F = K a - -  A K X  (19) 

K a = ( K ' p  + Ks)/2 
(20) 

A~: = 0 % - ~ s ) / 2  

Average Seebeck coefficient 

Sz = Ss + ( ~ q - 2 S s ) X  + (Sp + S s - 5 ; ) X '  (21) 

S r = [3(Sp -+- Ss) -+- S - F  2(Ss - 3Sp + S )X  

+ 3(Sv  + Ss - S) X ' ] / 8  (22) 

(Se/~:p)% + (Ss/Ks)~:p (23) g 

In the analysis of average Seebeck coefficients, we 
have used the fact that during the measurement  of 
these coefficients, heat flows only along the direction 
of measurement.  Also, we have extended our  previous 
analysis [24] of the average Seebeck coefficients Sz  
and Sv and employed an improved version of the 
approximat ion on (cos  4 0) .  



Even when the grains are isotropic, the effective 
thermoelectric parameters exhibit anisotropy in this 
model. The anisotropy will be stronger for smaller 
aspect ratio 13' = l o / l l  for larger deviations from unity 
of anisotropy ratios, 7, of the grains. It grows as 
f increases. From the analytical expressions for the 
isotropic case we can show that the thermoelectric 
parameters of the mosaic sample should be intermedi- 
ate between those of the grains and of the intergranu- 
lar medium. This statement is also valid for the ther- 
moelectric parameters of the stacks in the P or S direc- 
tion. 

anisotropy in the averaged thermoelectric parameters 
may be obtained. 

F =- ~z/C~t~ = ( P v / P z )  = 0.54 (24) 

F '  - ~;e/~Cz = 1.1 (25) 

F "  =- S F / S z  = 1.03 (26) 

G = Z r / Z z  = 1.43 (27) 

These values were derived from Fig. 8 for orientation 
factor f =  0.67 (dashed vertical line) estimated from 
the image analysis results using the approximate lin- 
ear relation X -- (1 + 2f) /3 .  

3.3. Numerical analysis of the thermoelectric 
effect 

From the experimental thermoelectric data on the 
zone-melted sample in Table II, the results of image 
analysis, and the anisotropy geometrical factors in 
Table III, we can estimate ; /=  0.3, 7' = 1.2, y" = 0.9, 
J3 = 0.03, [3' = 0.28 (=~). Fig. 8 shows an example of 
numerical analysis of the dependence of normalized 
thermoelectric parameters on the orientation factor, f 
using these values and ~ = 2, ~ ' =  2, ~ " =  1.5 in 
Equations 15 23. Rather strong f-dependence of con- 
ductivities c~v, Cyz and less sensitive behaviour of other 
parameters reproduce the experimental data on hot- 
pressed ceramics prepared under various processing 
conditions. Also, the fact that both CYF and ~;v increase 
with f while SF decreases slowly is in agreement 
with the experimental data. If one replaces the linear 
relation X =(1  + 2 f ) /3  with the quadratic one 
(=(1 + 2f2)/3) ,  the straight lines in this figure will be 
replaced by parabolas with the same end points. 
Moreover, the anisotropy in 9, ~c, S and thermoelectric 
figure of merit, Z, can be simulated almost quantitat- 
ively by the deliberate choice of the parameter ratios ~, 
~' and ~". With ~ = 2, ~' = 2, ct" = 1.5 (Fig. 8) the 
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Figure 8 The results of numerical analysis on the dependence of 
normalized thermoelectric parameters ~v/cya , ~z,"~l , ~;F/~I , ~z/Kl , 
Sv/S~, Sz/S~ on the orientation factor, f 

4. Discussion 
Reasonable agreement of these values with those listed 
in Table II offers the possibility of estimating para- 
meter ratios cz, ¢' and ¢" from the analysis of aniso- 
tropies in the averaged thermoelectric parameters for 
the thermal conductivity, ~, and Seebeck coefficient, S. 
The crystalline anisotropies 7' and 7" are not far from 
unity and geometrical anisotropy, which is sensitive to 
the value of ~' or ¢", gives sizeable contribution to the 
anisotropy of the averaged parameter. On the con- 
trary, small values of 7 make the contribution of 
physical anisotropy dominant, so that the ratio 
F - Oz/Cye is primarily determined by f and is rather 
insensitive to ¢. In this case, one must also use the 
magnitude of ~r  or Oz in the estimate of ~. These 
values of cz, ~' and ~" may be used in optimizing 
the thermoelectric figure of merit, Z, by means of 
an equal-Z-contour map on the ~" versus ~1 /2~ ,  

plane [24]. 
Unfortunately, the decrease in conductivities for 

samples with lower values of f is far more rapid than 
this model predicts. This seems to be related to a lower 
density in these samples, apparently associated with 
the presence of voids. In such cases, one may use 
effective ~ values which decrease rapidly as f becomes 
small. 

5. Conclusion 
The anisotropic thermoelectric properties of hot- 
pressed and zone-melted samples of n-type Bi2 Te2.ss- 
Se0.15 were measured and analysed in terms of an 
oriented mosaic model. Ratios of grains and bound- 
ary-layer dimensions and anisotropy ratios of 
thermoelectric parameters of crystalline grains were 
estimated from the microscopic image analysis of the 
sample cross-section and from measurement of ther- 
moelectric parameters of grains in two orthogonal 

1.0 directions. Using these ratios, an oriented mosaic 
c~ model is shown to be capable of predicting the aniso- 

0.9 2< tropy of averaged thermoelectric parameters of a hot- 
pressed sample with a specified orientation factor, f 

0.8 with reasonable accuracy. The estimate of these para- 
meters gives valuable information in optimizing the 
figure of merit of hot-pressed effects of c-axis and 
c-plane samples. The thermoelectric properties of the 
hot-pressed Bi2 Te2.s5 Seo. 15, when a deliberate choice 
is made of parameters ~z, ct' and c~", characterize the 
physical characteristics of the boundary layer. 
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